Statistical limits for quantum networks with semiconductor entangled photon sources

Semiconductor quantum dots are promising building blocks for quantum communication applications. Although deterministic, efficient, and coherent emission of entangled photons has been realized, implementing a practical quantum repeater remains outstanding. Here we explore the statistical limits for entanglement swapping with sources of polarization-entangled photons from the commonly used biexciton-exciton cascade….

Continue reading

Entangling a Hole Spin with a Time-Bin Photon: A Waveguide Approach for Quantum Dot Sources of Multi-Photon Entanglement

Deterministic sources of multi-photon entanglement are highly attractive for quantum information processing but are challenging to realize experimentally. In this paper, we demonstrate a route towards a scaleable source of time-bin encoded Greenberger-Horne-Zeilinger and linear cluster states from a solid-state quantum dot embedded in a nanophotonic crystal waveguide. By utilizing…

Continue reading

On-chip spin-photon entanglement based on single-photon scattering

The realization of on-chip quantum gates between photons and solid-state spins is a key building block for quantum-information processors, enabling, e.g., distributed quantum computing, where remote quantum registers are interconnected by flying photons. Self-assembled quantum dots integrated in nanostructures are one of the most promising systems for such an endeavor…

Continue reading

Quantum Interference of Identical Photons from Remote Quantum Dots

Photonic quantum technology provides a viable route to quantum communication, quantum simulation, and quantum information processing. Recent progress has seen the realisation of boson sampling using 20 single-photons and quantum key distribution over hundreds of kilometres. Scaling the complexity requires photonic architectures containing a large number of single photons, multiple…

Continue reading

All-optical Tuning of Indistinguishable Single-Photons Generated in Three-level Quantum Systems

Resonance fluorescence of two-level quantum systems has emerged as a powerful tool in quantum information processing. Extension of this approach to higher-level systems provides new opportunities for quantum optics applications. Here we introduce an all-optical tuning functionality into a well-established resonance fluorescence coherent driving scheme. We accomplish this by resonant…

Continue reading

Coherence of a charge stabilised tin-vacancy spin in diamond

Quantum information processing (QIP) with solid state spin qubits strongly depends on the efficient Quantum information processing (QIP) with solid state spin qubits strongly depends on the efficient initialisation of the qubit’s desired charge state. While the negatively charged tin-vacancy (SnV−) centre in diamond has emerged as an excellent platform…

Continue reading

Spin-optical dynamics and quantum efficiency of single V1 center in silicon carbide

Color centers in silicon carbide are emerging candidates for distributed spin-based quantum applications due to the scalability of host materials and the demonstration of integration into nanophotonic resonators. Recently, silicon vacancy centers in silicon carbide have been identified as a promising system with excellent spin and optical properties. Here, we…

Continue reading

Optically coherent nitrogen-vacancy defect centers in diamond nanostructures

Optically active solid-state spin defects have the potential to become a versatile resource for quantum information processing applications. Nitrogen-vacancy defect centers (NV) in diamond act as quantum memories and can be interfaced by coherent photons as demonstrated in entanglement protocols. However, in particular in diamond nanostructures, the effect of spectral…

Continue reading

Photoneutralization of charges in GaAs quantum dot based entangled photon emitters

Semiconductor-based emitters of pairwise photonic entanglement are a promising constituent of photonic quantum technologies. They are known for the ability to generate discrete photonic states on-demand with low multiphoton emission, near-unity entanglement fidelity, and high single photon indistinguishability. However, quantum dots typically suffer from luminescence blinking, lowering the efficiency of…

Continue reading